
Cisco Confidential 1 © 2014 Cisco and/or its affiliates. All rights reserved.

Programmability Concepts
with NETCONF/YANG
Craig Hill

Distinguished SE, U.S. Federal

CCIE #1628
Vers 1.1

© 2013 Cisco Systems, Inc. All rights reserved.

Hybrid SDN Model
Distributed and Centralized (via controller) Control Plane + Standards Data Plane

“South Bound” control
and API

Packet
Forwarding

Hardware + CP Packet
Forwarding

Hardware + CP

Packet
Forwarding

Hardware + CP
Network Element (Phy,
Virt), with Distributed
CP + programming
capabilities through
Southbound API

Controller
Operating System controlling
specific functions of the
network

“North Bound”
control and API

App App App App Applications layered
on top

SDN Control Plane Architecture
(Hybrid)

Communication
Channel
To
Network
Element

NETCONF, BGPLS, PCEP,
OpenFlow, OVSDB, CLI

NB API’s

IP/MPLS
BGP/OSPF

© 2013 Cisco Systems, Inc. All rights reserved.

Hybrid SDN Model
Open Protocols and Direct Device Programmability

Open protocols and Device
Programmability

Packet
Forwarding

Hardware + CP Packet
Forwarding

Hardware + CP

Packet
Forwarding

Hardware + CP

Network Element (Phy,
Virt), with Distributed
CP + programming
capabilities through
Southbound API

App App App App Applications layer

SDN Control Plane Architecture
(Hybrid)

Communication
Channel
To
Network
Element

NETCONF, RESTCONF,
REST, SSH/CLI

NB API’s

IP/MPLS
BGP/OSPF

Why Programmability?

Evolution of Network Configuration

We need to better manage network devices programmatically

NEXUS>enable
NEXUS# config terminal
NEXUS(config)# interface ethernet 1/1
NEXUS(config-if)# no switchport
NEXUS(config-if)# ip address 1.1.1.1 255.255.255.0
NEXUS(config-if)# no shutdown
NEXUS(config-if)# exit
NEXUS(config)# feature eigrp
NEXUS(config)# router eigrp Test1
NEXUS(config)# interface ethernet 1/1
NEXUS(config-if)# ip router eigrp Test1
NEXUS(config-if)# no shutdown
NEXUS(config-if)# end
NEXUS# copy run start

Today

CAT6K>enable
CAT6K# config terminal
CAT6K(config)# interface fastethernet 1/1
CAT6K(config-if)# ip address 1.1.1.1 255.255.255.0
CAT6K(config-if)# no shutdown
CAT6K(config-if)# exit
CAT6K(config)# router eigrp
CAT6K(config-router)# network 1.1.1.0
CAT6K(config-router)# exit
CAT6K(config)# exit
CAT6K# copy run start

1990s

Presenter
Presentation Notes
If we look at the network administration side, though, the story is different.

Yes, networks have grown multi-fold in number of devices, classes of devices, and complexity of devices. We support more and more protocols and technologies, and the network itself has many products beyond just switches and routers – Load balancers, firewalls, security appliances.

However, network management has not kept up. The command line interface and the manual method of provisioning are majorly used. That is what we used in the 90s, to configure say an interface or a protocol. As you can see, this has not changed much even today, with similar command set being used.

A new set of tools is required to be able to provision and manage these new classes of devices and technologies, in a more dynamic fashion.

Today, a VM can be brought up with a particular IP address and VLAN, in a few clicks on one of the thousands of the servers. The network needs to be able to be provisioned in a similar manner, so that this new VM can talk to its peers on network automagically and securely.

Why Programmability is important?

7

Save Time Human Error Customize Innovate

Application Frameworks, Management Systems, Controllers, ...

Device

Forwarding
Control

Network Services

Orchestration

Management

…

…

OpenFlow

OpenFlow

Operating Systems – IOS / NX-OS / IOS-XR
 API (on device) and Data Models (YANG)

OpenStack Puppet OnePK C/Java

Puppet

Neutron

Protocols

“Protocols”
BGP, PCEP,...

Python NETCONF REST ACI Fabric

OpFlex

Network Device Plug-Ins

RESTful

YANG XML/JSON

Presenter
Presentation Notes
What is Puppet?
Puppet is IT automation software that defines and enforces the state of your infrastructure throughout your software development cycle. From provisioning and configuration to orchestration and reporting, from initial code development through production release and updates, Puppet frees sysadmins from writing one-off, fragile scripts and other manual tasks. At the same time, Puppet ensures consistency and dependability across your infrastructure.
With Puppet, repetitive tasks are automated away, so sysadmins can quickly deploy business applications, scaling easily from tens of servers to thousands, both on-premise and in the cloud.
What Puppet Does
Puppet is written in a declarative language, meaning you tell Puppet what results you want, rather than how to get there.
Under the hood, Puppet:�
Defines the desired state of your infrastructure.
Simulates configuration changes before enforcing them.
Enforces the desired state automatically, correcting any configuration drift.
Reports on any differences between the actual state and the desired state, plus any changes that were made to enforce the desired state.

Why NETCONF/YANG? - Informational RFC 3535

• SNMP had failed
(For configuration, that is, NOT mgmt)
Extensive use in fault handling and
monitoring

• CLI scripting
“Market share” 70%+

Abstract

This document provides an overview of a
workshop held by the Internet Architecture Board
(IAB) on Network Management. The workshop
was hosted by CNRI in Reston, VA, USA from
June 4 thru June 6, 2002. The goal of the
workshop was to continue the important dialog
started between network operators and protocol
developers, and to guide the IETFs focus on
future work regarding network management.

configuration

Presenter
Presentation Notes
A lot of this started back in early 2000’s, which produced RFC 3535, and the challenge was changes were needed. Internet was exploding, as were network devices, SNMP failed as a configuration approach
WHY are operators NOT using SNMP?
This was very NETWORK Operator driven as well and the result was the move in this NETCONF and YANG model direction

Cost and
complexity

• No well-defined protocols and data-
models

• Lack of atomicity
• Ordering problem

NETCONF
Manager

OSS
NMS
EMS

Implications of RFC3535 – Legacy Situation

Reduced
Cost and

complexity

Cost/
Value

NETCONF
Manager

OSS
NMS
EMS

• Transactions
• Models
• Standardized Protocols

Implications of RFC3535, with transactions

NETCONF and YANG in Context

NETCONF
Manager

NETCONF

Yang
Models

YANG Models YANG Models

YANG Models

YANG Models

Management
Applications

NETCONF Protocol
Introduction

What is NETCONF?
NETCONF (Network Configuration Protocol) is an IETF configuration
management protocol

• Not only configuration access, but operational state data
• NETCONF uses XML (as you are going to see)

 Why NETCONF?

Easy to Use

Separates Config and Operational Data
Lots of Tooling

Accessible Format
Error Checking

Backup/Restore Capability
Human and Machine Friendly

N
ext-G

en C
onfiguration

M
anagem

ent
R

equirem
ents

R
FC

3535

NETCONF IETF Standard Information

V 1.0 V 1.1 Extension

RFC 6535
Background and
Requirements

RFC 6241
1.1 Base NETCONF Protocol

RFC 5277
Notifications

RFC 4741
1.0 Base NETCONF Protocol

RFC 6242
NETCONF over SSH

RFC 5717
Partial Locking

RFC 4742
NETCONF over SSH

RFC 6243
With defaults

RFC 6244
NETCONF + YANG

Architectural Overview

NETCONF Protocol Stack

Transport

Messages

Operations

Content Server

Client SSH

Reason:
• Connection-oriented (TCP)
• Authenticated
• Reliable
• Secure

NETCONF Protocol Stack

Transport

Messages

Operations

Content
Server

Client

<rpc>

RPC Client’s Request Methods:
• Controller
• NMS
• Script
• Manual

<rpc-
reply>

NETCONF Messages:
• Remote Procedure Call (RPC)

NETCONF Protocol Stack

Transport

Messages

Operations

Content

OPERATION DESCRIPTION

<get-config> Retrieve data from the running
configuration

<get> Retrieve running configuration or
device statistic

<edit-config> Modify a configuration database
- operation = merge (default),

delete, create, replace, remove
- test-option (:validate), error-

option

<copy-config> Copy a configuration database

<delete-config> Delete a configuration database

<commit> Commit candidate configuration to
the running db

<lock>/<unlock> Lock or unlock a configuration
datastore system

<close-session> Terminate this session

<kill-session> Force Termination of session

NETCONF Protocol Stack

Transport

Messages

Operations

Content

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 </capabilities>
 <session-id>285212672</session-id>
</hello>
]]>]]>

NETCONF Configuration Data Stores

• Named configuration stores
–Each data store may hold a full copy of the configuration

• Running is mandatory, Startup and Candidate optional (capabilities :startup,
:candidate)

• Running may or may not be directly writable (:writable-running)

Startup Running Candidate Files… / URLs…

Presenter
Presentation Notes
Candidate is required for network wide transactions

Config data, Notification (XML)

NETCONF Protocol Stack Summary

Transport

Messages

Operations

Content

<get>, <get-config>,<edit-config> etc

<rpc>, <rpc-reply>

SSH

C
lient

Server

YANG Language
Introduction

Overview
• YANG

Data definition language for management data
... Original focus on configuration information, but not any more restricted to it
... Original context: NETCONF
... Can be separated from NETCONF (not an original goal but important!)
Consistent data enabled through models defined in a common language
Model-driven Interfaces

• NETCONF
Network Configuration Protocol
Fill the void between SNMP (monitoring) and CLI (geared towards humans)

• Standardization through IETF (mainly netconf and netmod WGs)

What can you do with YANG
• Define data models for something that you need to manage. Example:

Interfaces and their configuration
Access Control Lists (rules that govern policies how to handle packets)
Topology

• Specify semantics that allow to validate and maintain consistency
Operational or configuration – “read-only” or “read-write”
Conditions and constraints – value dependencies, referential integrity, …
Units, defaults, ranges, alternatives, …

• Extend data models previously defined
Simply “insert” new data where applicable (“augmentation”)
Add a new sub-tree into the existing model

• Instantiate the data as “conceptual datastore” and manage your device by accessing
and manipulating contents of that datastore

Datastore: an abstraction of a “real resource” – what you are managing

Presenter
Presentation Notes
Semantics target the management control domain.

YANG-based Management Architecture
Netconf client

(manager)

Conceptual
Data
Store

Netconf server
(agent)

An NMS, an SDN Controller

message exchanges include
data encoded per transfer
syntax (e.g. XML)

Operations retrieve + modify
datastore contents
Data defined per YANG
(the “schema”)

Real Resources

YANG
(Schema) Data

(Instance)

Interfaces, ACLs, BGP, …

Internal API calls

Note: a device can have several
datastores

“Running”, “Startup”, “Candidate”
Only “running” contains operational data
Operations can target specific datastores
- as a whole (e.g. copy) or data items in it

Cisco Confidential 41 © 2014 Cisco and/or its affiliates. All rights reserved.

YANG structure
 +--rw if:interfaces
 +--rw if:interface [name]
 +--rw name string
 + ...
 +--rw ipv4?
 | +--rw enabled? boolean
 | +--rw ip-forwarding? boolean
 | +--rw address [ip]
 | | +--rw ip inet:ipv4-address
 | | +--rw (subnet)?
 | | +--:(prefix-length)
 | | | +--rw ip:prefix-length? uint8
 | | +--:(netmask)
 | | +--rw ip:netmask? inet:ipv4-address
 | +--rw neighbor [ip]
 | +--rw ip inet:ipv4-address
 | +--rw phys-address? yang:phys-address
 +--rw ipv6?
 +--rw enabled? boolean
 +--rw ip-forwarding? boolean
 +--rw address [ip]
 | +--rw ip inet:ipv6-address
 | +--rw prefix-length? uint8
 +--rw neighbor [ip]
 | +--rw ip inet:ipv6-address
 | +--rw phys-address? yang:phys-address
 +--rw dup-addr-detect-transmits? uint32
 +--rw autoconf
 +--rw create-global-addresses? boolean
 +--rw create-temporary-addresses? boolean
 +--rw temporary-valid-lifetime? uint32
 +--rw temporary-preferred-lifetime? uint32

An index, so a list

“?” indicates it may or may not be included

“()” indicates a choice of alternatives

“rw” means it’s writable

Data type, indicative of a leaf item

prefix indicates definition source

Cisco Confidential 42 © 2014 Cisco and/or its affiliates. All rights reserved.

Instance information
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>eth0</name>
 <type>ethernetCsmacd</type>
 <location>0</location>
 <if-index>2</if-index>
 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <address>
 <ip>192.0.2.1</ip>
 <prefix-length>24</prefix-length>
 </address>
 </ipv4>
 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <address>
 <ip>2001:DB8::1</ip>
 <prefix-length>32</prefix-length>
 </address>
 <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
 </ipv6>
 </interface>
</interfaces>

Cisco Confidential 43 © 2014 Cisco and/or its affiliates. All rights reserved.

YANG in the context of NETCONF

Transport

Remote
Operations

Mgmt
Services

Mgmt info
(instantiated/ payload)

Mgmt info
(definition)

XML-encoded content

YANG modules

Netconf operations
<edit-config>, <get-config>, <get>

Netconf RPC
<rpc>, <rpc-reply>

TLS, SSH

Netconf client
(manager)

Data

Conceptual
Data
Store

Netconf server
(agent)

YANG beyond Netconf

Transport

Remote
Operations

Mgmt
Services

Mgmt info
(instantiated/ payload)

Mgmt info
(definition)

XML-encoded
content

YANG modules

HTTP

Netconf ops REST
CONF

XML
RPC

TLS,
SSH

JSON ...

I2RS ...

NETCONF/YANG
Roadmap

Cisco Confidential 48 © 2014 Cisco and/or its affiliates. All rights reserved.

IOS XR YANG Model Support Overview

Release Components Platform Support

XR-5.3.0
infra +
20 components

ASR9k cdp
crypto-sam
ha-eem
ifmgr
infra-infra
ip-domain
Ipv4-io
ipv4-ma
ipv6-ma
lib-keychain

manageability-netconf
max-xml-ttyagent
parser
qos-ma
rgmgr
shellutil
subscriber-infra-tmplmgr
tty-management
tty-server
tty-vty

http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/security/configuration/guide/b-syssec-cg53x-asr9k/Implementing_the_Network_Configuration_Protocol.html

ASR 9000 IOS-XR NETCONF Configuration Link:

http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/security/configuration/guide/b-syssec-cg53x-asr9k/Implementing_the_Network_Configuration_Protocol.html

Cisco Confidential 49 © 2014 Cisco and/or its affiliates. All rights reserved.

IOS XR NETCONF/YANG Model Upcoming Support

Release Components Platform Support

XR-5.3.1

14 additional components

ASR9k
CRS

crypto/ssh
drivers/lib/media/ether
infra/alarm/logger
infra/mibs/ceredundancymib
infra/rsi
infra/syslog
ip/static

lib/mpp
platforms/chassis-control/invmgr
snmp/agent
snmp/mibs/entitymib
snmp/mibs/entstatemib
snmp/mibs/frucontrolmib
snmp/mibs/ifmib

• IOS XR YANG Support

• Platform Support
NCS 4K RLS 6.0

NCS 6K RLS 6.0

XRv RLS 5.3.1

• Tool Support
NCClient RLS 5.3.1

Cisco Confidential 50 © 2014 Cisco and/or its affiliates. All rights reserved.

IOS XE NETCONF/YANG Model Upcoming Support

• IOS XE NETCONF/YANG Support
IOS-XE 3.17 CSR 1000v, ASR 1000, ISR 4400, ASR 9000, Cat 4K, 3K, 2K

• IOS XE REST Support

Thank you.

	Programmability Concepts with NETCONF/YANG
	Hybrid SDN Model
	Hybrid SDN Model
	Why Programmability?
	Evolution of Network Configuration
	Why Programmability is important?
	Programmability: Network Automation Interfaces
	Why NETCONF/YANG? - Informational RFC 3535
	Slide Number 11
	Slide Number 12
	NETCONF and YANG in Context
	NETCONF Protocol Introduction
	What is NETCONF?
	NETCONF IETF Standard Information
	NETCONF Protocol Stack
	NETCONF Protocol Stack
	NETCONF Protocol Stack
	NETCONF Protocol Stack
	NETCONF Configuration Data Stores
	NETCONF Protocol Stack Summary
	YANG Language Introduction
	Overview
	What can you do with YANG
	YANG-based Management Architecture
	YANG structure
	Instance information
	YANG in the context of NETCONF
	YANG beyond Netconf
	NETCONF/YANG�Roadmap
	IOS XR YANG Model Support Overview
	IOS XR NETCONF/YANG Model Upcoming Support
	IOS XE NETCONF/YANG Model Upcoming Support
	Slide Number 52

