

Programmability Concepts with NETCONF/YANG

Craig Hill

Distinguished SE, U.S. Federal

CCIE #1628

Hybrid SDN Model

Distributed and Centralized (via controller) Control Plane + Standards Data Plane

Hybrid SDN Model

Open Protocols and Direct Device Programmability

Why Programmability?

Evolution of Network Configuration

1990s

CAT6K>enable

CAT6K# config terminal

CAT6K(config)# interface fastethernet 1/1

CAT6K(config-if)# ip address 1.1.1.1 255.255.255.0

CAT6K(config-if)# no shutdown

CAT6K(config-if)# exit

CAT6K(config)# router eigrp

CAT6K(config-router)# network 1.1.1.0

CAT6K(config-router)# exit

CAT6K(config)# exit

CAT6K# copy run start

NEXUS>enable

NEXUS# config terminal

NEXUS(config)# interface ethernet 1/1

NEXUS(config-if)# no switchport

NEXUS(config-if)# ip address 1.1.1.1 255.255.255.0

NEXUS(config-if)# no shutdown

NEXUS(config-if)# exit

NEXUS(config)# feature eigrp

NEXUS(config)# router eigrp Test1

NEXUS(config)# interface ethernet 1/1

NEXUS(config-if)# ip router eigrp Test1

NEXUS(config-if)# no shutdown

NEXUS(config-if)# end

NEXUS# copy run start

We need to better manage network devices programmatically

Why Programmability is important?

Save Time

Human Error

Customize

Innovate

Programmability: Network Automation Interfaces

Why NETCONF/YANG? - Informational RFC 3535

Abstract

This document provides an overview of a workshop held by the Internet Architecture Board (IAB) on Network Management. The workshop was hosted by CNRI in Reston, VA, USA from June 4 thru June 6, 2002. The goal of the workshop was to continue the important **dialog** started between **network operators** and protocol developers, and to guide the IETFs focus on future work regarding network management.

- SNMP had failed
 (For configuration, that is, NOT mgmt)
 Extensive use in fault handling and monitoring
- CLI scripting
 "Market share" 70%+

Implications of RFC3535 – Legacy Situation

Cost and complexity

- No well-defined protocols and datamodels
- Lack of atomicity
- Ordering problem

Implications of RFC3535, with transactions

NETCONF and **YANG** in Context

NETCONF Protocol Introduction

What is NETCONF?

NETCONF (Network Configuration Protocol) is an IETF configuration management protocol

- Not only configuration access, but operational state data
- NETCONF uses XML (as you are going to see)

Why NETCONF?

Easy to Use Separates Config and Operational Data Lots of Tooling **Accessible Format Error Checking** Backup/Restore Capability **Human and Machine Friendly**

Next-Gen Configuration
Management
Requirements

RFC3535

NETCONF IETF Standard Information

V 1.0	V 1.1	Extension
RFC 6535 Background and Requirements	RFC 6241 1.1 Base NETCONF Protocol	RFC 5277 Notifications
RFC 4741 1.0 Base NETCONF Protocol	RFC 6242 NETCONF over SSH	RFC 5717 Partial Locking
RFC 4742 NETCONF over SSH		RFC 6243 With defaults
		RFC 6244 NETCONF + YANG Architectural Overview

Content

Operations

Messages

Transport

OPERATION	DESCRIPTION	
<get-config></get-config>	Retrieve data from the running configuration	
<get></get>	Retrieve running configuration or device statistic	
<edit-config></edit-config>	Modify a configuration database - operation = merge (default), delete, create, replace, remove - test-option (:validate), error- option	
<copy-config></copy-config>	Copy a configuration database	
<delete-config></delete-config>	Delete a configuration database	
<commit></commit>	Commit candidate configuration to the running db	
<lock>/<unlock></unlock></lock>	Lock or unlock a configuration datastore system	
<close-session></close-session>	Terminate this session	
<kill-session></kill-session>	Force Termination of session	

<?xml version="1.0" encoding="UTF-8"?> <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <capabilities> <capability> urn:ietf:params:netconf:base:1.0 </capability> Content <capability> urn:ietf:params:netconf:capability:candidate:1.0 </capability> **Operations** <capability> urn:ietf:params:netconf:capability:notification:1.0 </capability> </capabilities> Messages <session-id>285212672</session-id> </hello>]]>]]> Transport

NETCONF Configuration Data Stores

- Named configuration stores
 - -Each data store may hold a full copy of the configuration
- Running is mandatory, Startup and Candidate optional (capabilities :startup, :candidate)
- Running may or may not be directly writable (:writable-running)

NETCONF Protocol Stack Summary

YANG Language Introduction

Overview

YANG

Data definition language for management data

- ... Original focus on configuration information, but not any more restricted to it
- ... Original context: NETCONF
- ... Can be separated from NETCONF (not an original goal but important!)

 Consistent data enabled through models defined in a common language
- Model-driven Interfaces

NETCONF

Network Configuration Protocol

Fill the void between SNMP (monitoring) and CLI (geared towards humans)

Standardization through IETF (mainly netconf and netmod WGs)

What can you do with YANG

- Define data models for something that you need to manage. Example: Interfaces and their configuration Access Control Lists (rules that govern policies how to handle packets) Topology
- Specify semantics that allow to validate and maintain consistency
 Operational or configuration "read-only" or "read-write"
 Conditions and constraints value dependencies, referential integrity, ...
 Units, defaults, ranges, alternatives, ...
- Extend data models previously defined
 Simply "insert" new data where applicable ("augmentation")
 Add a new sub-tree into the existing model
- Instantiate the data as "conceptual datastore" and manage your device by accessing and manipulating contents of that datastore
 - Datastore: an abstraction of a "real resource" what you are managing

YANG-based Management Architecture

An NMS, an SDN Controller

message exchanges include data encoded per transfer syntax (e.g. XML)

Operations retrieve + modify datastore contents
Data defined per YANG (the "schema")

Internal API calls

Interfaces, ACLs, BGP, ...

Note: a device can have several datastores

"Running", "Startup", "Candidate"
Only "running" contains operational data
Operations can target specific datastores
- as a whole (e.g. copy) or data items in it

YANG structure

An index, so a list

```
+--rw if:interfaces
         +--rw if:interface([name]
                                                        Data type, indicative of a leaf item
                                           string
             +--rw name
             +--rw ipv4?
                +--rw enabled?
                                           boolea
                +--rw ip-forwarding?
                                           boolear
                +--rw address [ip]
                   +--rw ip
                                           inet:ipv4-address
                                                                            "()" indicates a choice of alternatives
                   +--rw (subnet)
                      +--: (prefix-length)
                         +--rw ip:prefix-length?
                                                    uint8
                      +--: (netmask)
                                                    inet:ipv4-address
                         +--rw ip:netmask?
                +--rw neighbor [ip]
                   +--rw ip
                                           inet:ipv4-address
                                           yang:phys-address
                   +--rw phys-address?
                                                                          "?" indicates it may or may not be included
                 w ipv6?
                +--rw enabled?
                                           boolean
                                           boolean
                +--rw ip-forwarding?
                                                                         "rw" means it's writable
                +--rw address [ip]
                                           inet:ipv6-address
                   +--rw ip
                    -rw prefix-length?
                                           uint8
                  -rw neighbor [ip]
                                                                          prefix indicates definition source
                                           inet:ipv6-address
                   +-rw ip
                   +--rw phys-address?
                                           yang:phys-address
                +--rw dup-addr-detect-transmits?
                                                     uint32
                +--rw autoconf
                                                           boolean
                   +--rw create-global-addresses?
                   +--rw create-temporary-addresses?
                                                           boolean
                   +--rw temporary-valid-lifetime?
                                                           uint32
© 2014 Cisco and/or its affiliates. All rights reservet. -- rw temporary-preferred-lifetime?
                                                           uint32
```

Instance information

```
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
     <interface>
         <name>eth0</name>
         <type>ethernetCsmacd</type>
         <location>0</location>
         <if-index>2</if-index>
         <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
           <address>
             <ip>192.0.2.1</ip>
             fix-length>24</prefix-length>
           </address>
         </ipv4>
         <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
           <address>
             <ip>2001:DB8::1</ip>
             fix-length>32</prefix-length>
           </address>
           <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
         </ipv6>
     </interface>
</interfaces>
```

YANG in the context of NETCONF

Mgmt info (definition)

Mgmt info (instantiated/ payload)

Mgmt Services

Remote Operations

Transport

YANG modules

XML-encoded content

Netconf operations <edit-config>, <get-config>, <get>

Netconf RPC <rpc>, <rpc-reply>

TLS, SSH

YANG beyond Netconf

NETCONF/YANG Roadmap

IOS XR YANG Model Support Overview

Release	Components		Platform Support
XR-5.3.0 infra + 20 components	cdp crypto-sam ha-eem ifmgr infra-infra ip-domain lpv4-io ipv4-ma ipv6-ma lib-keychain	manageability-netconf max-xml-ttyagent parser qos-ma rgmgr shellutil subscriber-infra-tmplmgr tty-management tty-server tty-vty	ASR9k

ASR 9000 IOS-XR NETCONF Configuration Link:

http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k r5-3/security/configuration/guide/b-syssec-cg53x-asr9k/Implementing the Network Configuration Protocol.html

IOS XR NETCONF/YANG Model Upcoming Support

IOS XR YANG Support

Release	Components		Platform Support
XR-5.3.1 14 additional components	crypto/ssh drivers/lib/media/ether infra/alarm/logger infra/mibs/ceredundancymib infra/rsi infra/syslog ip/static	lib/mpp platforms/chassis-control/invmgr snmp/agent snmp/mibs/entitymib snmp/mibs/entstatemib snmp/mibs/frucontrolmib snmp/mibs/ifmib	ASR9k CRS

Platform Support

 NCS 4K
 RLS 6.0

 NCS 6K
 RLS 6.0

 XRv
 RLS 5.3.1

Tool Support

NCClient RLS 5.3.1

IOS XE NETCONF/YANG Model Upcoming Support

IOS XE NETCONF/YANG Support
 IOS-XE 3.17 CSR 1000v, ASR 1000, ISR 4400, ASR 9000, Cat 4K, 3K, 2K

• IOS XE REST Support

